
RV’04 Preliminary Version

JVM Independent Replay in Java

Viktor Schuppan 1, Marcel Baur 2, Armin Biere 1

Computer Systems Institute, ETH Zentrum RZ H, CH-8092 Zürich, Switzerland

Abstract

Deterministic replay can help to understand the cause of a failing execution of a
multi-threaded program. Stepwise browsing of a counterexample serves the same
purpose in the context of static and dynamic checking. In this paper we present
a tool for deterministic replay of a multi-threaded execution of a Java program.
The replay engine is independent of a specific JVM. We also suggest a language to
describe thread schedules. Such schedules can be produced either directly by a tool
or virtual machine or can, given some additional information, be extracted from a
bytecode trace. Thus, off-the-shelf debuggers can be used for both, cyclic debugging
of multi-threaded Java programs, and for browsing of concurrent execution traces
produced by many checking tools. Experimental results show that correct replay can
be performed with acceptable overhead across a number of virtual machines. Plug-
ins have been implemented to generate schedules automatically for Java PathFinder
and for JNuke.

Key words: execution replay, debugging aids, verification tools,
testing tools, Java

1 Introduction

Cyclic debugging [21] is still an important means to locate the source of a
fault in a program. Non-determinism of any kind makes cyclic debugging
difficult. In programming languages such as Java or C#, concurrency adds
an important source of non-determinism. However, most debuggers provide
limited support for debugging multi-threaded applications.

If sufficient information is collected during the execution of a multi-threaded
application to ensure that the concurrent behavior can be deterministically re-
produced, cyclic debugging can be used in the same manner as for sequential
programs. Several solutions that capture and deterministically replay the ex-
ecution of a multi-threaded application have been proposed for Java [5,10,15].

1 Email: {schuppan,biere}@inf.ethz.ch
2 Email: baur@adbw.ch

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:schuppan@inf.ethz.ch
mailto:baur@adbw.ch

Schuppan, Baur and Biere

The above approaches provide an integrated solution for capture and re-
play. In this paper we present a separate replay facility. It can enforce a
thread schedule as it might occur during the execution of a multi-threaded
Java application on a uniprocessor. The replay facility is independent of a
specific virtual machine, i.e., any compliant [20] virtual machine can be used
for replay. Replay is achieved by instrumenting the class files of the application
according to a given schedule and linking a replay engine during runtime.

A number of static and dynamic checkers produce error traces for con-
current Java programs, e.g., Java PathFinder [32] or Bandera [7]. Our replay
facility can free developers of such tools to provide trace browsers or debuggers
of their own but instead only produce information required for replay. Appli-
cation developers can then use standard debuggers for trace browsing, thereby
utilizing most features found in a debugger and working in the development
environment they are used to.

An execution is described as a sequence of thread switches. The point
of a thread switch is given as a combination of the address of an instruction
and an execution count for that instruction. If that format is not produced
directly by a virtual machine or verification tool, the required information
can be extracted from a sequence of bytecode if thread identity and some
information on the thread state are available.

We used a custom virtual machine to generate schedules. In addition, we
implemented a listener to automatically extract schedules from an execution of
error paths with Java PathFinder. Replay has been tested with several virtual
machines. Single-stepping through an execution trace without the user having
to select the active thread has been performed with jdb, Eclipse and others.
The slowdown incurred by the replay facility is usually less than 10 times for
Sun’s virtual machine (v. 1.4).

Section 2 gives an overview on related work. The format of a thread
schedule is detailed in 3. Section 4 explains the mechanisms used by our
implementation. Results on the performance of the replay mechanism are
stated in section 5. In section 6 we outline a more general format for thread
schedules. The last two sections discuss open aspects and conclude.

2 Related Work

Most early approaches to replay address parallel executions. These require a
different approach as reconstructing a schedule cannot ensure correct replay of
parallel programs. Pan and Linton [24] record and replay the values of shared
objects at each access. LeBlanc and Mellor-Crummey implemented a scheme
that records the order of accesses based on version counters in Instant Replay
[19]. Tai et. al. [31] use a source-to-source transformation of an Ada program
to replay a sequence of synchronization events. Their scheme assumes that
shared variables are protected appropriately. Netzer [23] presents an algorithm
that reduces the amount of data generated by these approaches.

77

Schuppan, Baur and Biere

Russinovich and Cogswell [26] reconstruct the scheduling of an execution
on a uniprocessor by putting all but one threads to sleep to achieve replay for
the Mach operating system. Our basic approach for replay and representation
of a thread schedule is probably closest to theirs. They use a software in-
struction counter [22], i.e., the number of backward control transfers and the
current instruction pointer to decide when a thread switch should happen,
while we directly count the executions of an instruction. The implementa-
tion is based on a modified debug version of the Mach system libraries. An
application needs to be compiled with a flag that keeps one of the processor
registers free to hold a counter for the backward control transfers. Then, as
in our approach, assembly files are instrumented, linked with a debug library,
supplied with a schedule file, and can be executed in an existing debugger.

A first solution to recording deterministic replay of executions of multi-
threaded Java programs was proposed by Choi and Srinivasan [5]. They
introduced the notion of a logical thread schedule, given by a linear order
of the critical events during an execution. Their implementation is based
on a modified Java virtual machine. The approach was extended to include
record/replay of networking events in distributed applications [17]. Later [4],
DejaVu has been integrated into the Jalapeno virtual machine with a focus on
ensuring symmetric behavior for record and replay of the entire virtual ma-
chine in the presence of cross-optimization of the application and the runtime
environment. Their work is different from ours in that they try to reconstruct
precisely the behavior of a single virtual machine while we want to achieve
portable replay across different virtual machines. Our approach lacks pre-
cision in comparison with DejaVu. This seems acceptable as the traces we
want to replay are produced by dynamic or static checking tools that typi-
cally represent failures that are not based on internal behavior of a virtual
machine. However, this view might change if tools are available that also
consider potential problems caused by the Java memory model [20].

In [10] a capture and replay algorithm was implemented as part of a tool
to support testing of concurrent Java programs. Besides debugging, replay is
used to automatically test whether different interleavings at a specific execu-
tion point lead to different results if a data race is present. Replay is performed
with bytecode instrumentation, the scheduling information is given by thread
switches. A number of improvements seems to have been made in comparison
with DejaVu [5], however, the paper gives few details on the mechanisms used
in their implementation.

JaReC [15] also aims at portable replay for multi-threaded Java applica-
tions. JaReC uses bytecode instrumentation to capture and replay schedules
based on Lamport clocks for objects. It assumes a data-race free program and,
therefore, only needs to instrument at synchronization operations. This tech-
nique has originally been used by the same group to implement RecPlay [25],
a tool that combines record/replay and data race detection for Solaris. JaReC
is similar to our approach in that it instruments an application and performs

78

Schuppan, Baur and Biere

calls to a replay engine at runtime. However, instrumentation is performed on
the fly by the virtual machine. This enables dynamic loading and replaying
of classes over a network and prevents having several versions of a class. If
present, JaReC uses the JVMPI [30] for instrumentation. While concurrent
schedules can be represented, it is less flexible for sequential thread schedules
as thread switches can only be specified at the start or end of synchronized
sections. It is not clear from [25] whether recursive locks can be handled by
their mechanism.

Choi and Zeller [6] showed how a combination of replay and delta debug-
ging [33] can be used to locate the source of an error by finding two schedules
with a small set of differences, one leading to a failure and the other producing
a correct result.

We only cover replay of non-determinism introduced by concurrency. A
description of a prototype of a tool for Java that replays other forms of non-
determinism is given by Steven et. al. [28]. In principle, our schedule format
is flexible enough such that additional commands to replay input/output be-
havior or random numbers could be incorporated.

3 Representing Information for Replay

In this section we describe our approach to represent the information required
for replay. After discussing different possible solutions we briefly outline our
approach. An example illustrates our schedule format before details are given.

3.1 What Information is Needed for Replay?

Parallel or concurrent execution typically introduces nondeterminism into a
program by allowing accesses to shared objects happen in different order. If
this is the only form of nondeterminism, replay can be achieved by restoring
Lamport’s “happens-before” relation [18] of an execution, i.e., the partial order
of events that causally affect each other.

Some approaches record the order per relevant event using vector clocks
[23] or version counters for shared objects [19]. Logging can be restricted to
the order of synchronization operations if the program is assumed to be free
of data races [31,25,15]. On a uniprocessor a more implicit approach can be
taken: it is (largely) sufficient to restore the scheduling as it happened during
the original execution [26]. For Java, extra information on the interaction
of interrupt and notify or time-out of wait, sleep, or join may need to
be provided. In between is the approach by Choi and Srinivasan [5]. They
record/replay a logical thread schedule, i.e., a linear order of all relevant events.

An approach that directly records the order of relevant events seems more
elegant in that it reflects the true reason for a failure or a different result. It is
also, to some extent, more abstract and might, thus, be better suited for fur-
ther analysis. It retains parallelism inherent in the application even if executed

79

Schuppan, Baur and Biere

originally on a uniprocessor. On the other hand, restoring a thread schedule
will often need to log less data. In addition, capturing a thread schedule is
probably easier to implement as might be extracting a thread schedule from
a bytecode trace. Our primary concerns were simple extraction of schedules
from checking tools and stepwise execution of a trace in a debugger. We there-
fore have implemented replay based on thread schedules. A thread schedule
is represented as a sequence of thread switches. The point of a thread switch
is given as a location in the program and an execution count of the bytecode
at that location.

3.2 Example

Figures 1 – 3 give a producer-consumer scheme as an example. The main

method starts one producer thread and two consumer threads; then it waits
for those to terminate. Neither clients nor buffer use synchronization. Fig. 1a)
shows a schedule that leads to a failure. The main thread (id 0) starts its
children and hands over to the producer thread (id 1) that, in turn, processes
up to the point where the buffer contains one element; it stops before the
bytecode in line 13 is executed. Next, the first consumer (id 2) thread queries
whether the buffer contains an element, gets a positive answer but switches
to the second consumer (id 3) before it gets to actually perform the get in
lines 9/12. The second consumer can complete a full iteration and stops
only before executing the goto in line 13. The failure occurs, when the first
consumer continues. Figure 1b) shows use of loops. The producer and one of
the consumers interleave for two iterations. Then, producer and the second
consumer interleave; this continues infinitely.

3.3 A Language for Schedules

A text-based format is used. The schedule contains one command per line.
Blank lines are ignored. Comments start with a #-sign and extend to the end
of the line. The following types of commands are supported 3 :

events: before and in indicate when an action should occur,

actions: switch, notify, timeout, die, terminate, and log trigger actions
of the replay engine, and

control flow: loopbegin and loopend specify loops in the schedule.

An event command can be followed by several action commands. One
thread is executing at a time. Initially, the thread corresponding to the main

method of the application is running.

3 Note, that the term event is used in our language description with a slightly different
meaning than in the rest of the paper: here, an event is an indication of the point in time
at which a steering action should be taken, while in the other parts an event is something
that is to be replayed or controlled.

80

Schuppan, Baur and Biere

0 (main) running
before Prodcons 1 36 1
switch 1 # p
before Producer 1 13 1
switch 2 # c1
before Consumer 1 9 1
switch 3 # c2
before Consumer 1 13 1
switch 2 # c1
error when executing get

0 (main) running
before Prodcons 1 36 1
switch 1 # p
loopbegin
loopbegin
before Producer 1 13 1
switch 2 # c1
before Consumer 1 13 1
switch 1 # p
loopend 2

loopbegin
before Producer 1 13 1
switch 3 # c2
before Consumer 1 13 1
switch 1 # p
loopend 2
loopend inf

a) Schedule leading to a failure. b) Infinitely looping schedule.

Fig. 1. Schedules for Producer-Consumer

public class Producer extends Thread {
 public void run() {
 while (true) {
 if (Buffer.notFull()) {Buffer.put(0);}
 } }
} // Producer

public class Consumer extends Thread {
 public void run() {
 int i;
 while (true) {
 if (Buffer.notEmpty())
 {i = Buffer.get();}
 } }
} // Consumer

public class Prodcons {
 public static void main(String argv[]) {
 Producer p;
 Consumer c1, c2;
 p = new Producer();
 c1 = new Consumer(); c2 = new Consumer();
 p.start();
 c1.start(); c2.start();
 try {
 p.join();
 c1.join(); c2.join(); }
 catch (InterruptedException ie) {}
 System.exit(0); }
} // Prodcons

public class Buffer {
 private static int buffer, count;
 static boolean notFull() {return count < 1;}
 static boolean notEmpty() {return count > 0;}
 static void put(int i) {
 buffer = i;
 count++;
 }
 static int get() {
 if (!notEmpty()) {
 System.err.println("Error.");
 System.exit(1); }
 count--;
 return buffer; }
} // Buffer

Fig. 2. Source code for Producer-Consumer

Method void run() // Producer.java
 0 goto 3
 3 invokestatic #2 <Method boolean notFull()>
 6 ifeq 3
 9 iconst_0
 10 invokestatic #3 <Method void put(int)>
 13 goto 3

Method void run() // Consumer.java
 0 goto 3
 3 invokestatic #2 <Method boolean notEmpty()>
 6 ifeq 3
 9 invokestatic #3 <Method int get()>
 12 istore_1
 13 goto 3

Fig. 3. Bytecode for Producer-Consumer

An action might occur before or after a particular bytecode is executed. In
addition, for blocking invocations of wait, join, and sleep, a thread switch
can take place after the active thread has entered a blocking state. Keywords
before and in are used to specify that an action occurs before execution of a
bytecode or after it has blocked, respectively. An action after the execution of
an instruction is specified as happening before executing the next bytecode.
However, the latter does not exist if a bytecode terminates the current thread
either by returning from a run or the main method of the application or by
throwing an exception not caught by that thread. But both cases cannot
lead to a blocking state; therefore, the before command is used with die or
terminate to specify these situations. A bytecode is identified by the class
name of the method containing it, that method’s index in the class, and the
offset within that method. The last position states the count of the attempted
executions of that particular bytecode immediately before or during which the

81

Schuppan, Baur and Biere

action is performed (in other words, one more than the number of completed
executions). The execution count is reset after each event.

A thread switch suspends the active thread and normally resumes another.
The target is given by a switch, a thread is identified by a unique numerical
id assigned successively in the order of creation. Id none is used as target if
some threads are alive but all of them blocked – then, no thread is unblocked.

A Java thread may be in one of several states. Apart from executing or
being ready to execute, it can be waiting for the lock of an object, joining
another thread or sleeping. A waiting thread may already be notified. In
all blocking states it may be interrupted or timed out. Sun’s Java docu-
mentation [16,20,29] does not specify unambiguously the transitions between
different states. For details on the thread model we use, see Fig.A.1 in the ap-
pendix. The sequence of thread switches does not give all information needed
for precise replay of a concurrent execution. A thread reacts differently to a
call to interrupt depending on whether it is still blocked (it throws an ex-
ception when it restarts execution) or has already been notified or timed out
(it sets a flag). Actions notify and timeout can be used to track the state
accordingly. These actions need only be stated in the schedule if an interaction
between interrupt and notify or time-out occurs – otherwise replay will be
also correct without giving this information explicitly.

If a thread terminates, a thread switch has to be performed. However, the
dying thread must not be blocked. A command die is used in this case. The
replay engine waits for the dying thread to terminate until it hands control to
the next thread. A terminate command can be used to unblock all threads
and disable replaying. If performed before the proper end of execution, this
may leave the application in an inconsistent state. If the end of a schedule is
reached without executing terminate, the last switched to thread continues.
Finally, a log command can be used to print messages.

The format supports nested loops in the schedule. For i ≥ 1, the body of
a loop between loopbegin and loopend i is executed i times. loopend inf

generates an infinite loop that may be used to represent, e. g., counterexamples
obtained from a model checker. A brief summary of the syntax is given in
appendix B.

4 Mechanisms

Replay of a schedule is achieved by instrumenting the original application
according to a given schedule and supplying a library containing a replay
engine in addition to the instrumented class files to the virtual machine at
start-up. No separate thread is created to control replay. Rather, each ap-
plication thread performs method calls to the replay engine at appropriate
times. Given a proper schedule, every compliant [20] Java virtual machine
should then reproduce the original result. See Fig. 4 for an overview.

To replay a schedule the replay engine ensures that only the thread spec-

82

Schuppan, Baur and Biere

modified
.class

replay
engine

.class

jreplay

Dynamic
Checker

Checker
Static

VM
JNuke

compliant

T0

T1

T2

tT1

VM/
debugger

schedule deterministic
execution

before Class 1 0 1
switch 1
in Class 2 1 1
switch 2
in Class 1 2 1

terminate

switch 1
notify 1

before Class 2 1 1

Fig. 4. Overview of jreplay

public void block() throws Exception {
 synchronized(lock) {
 while (blocked) {
 try {lock.wait();}
 catch (InterruptedException e)
 {/* report error */} }
 blocked = true; }
} // block

public void unblock() {
 synchronized(lock) {
 blocked = false;
 lock.notifyAll(); }
} // unblock

Fig. 5. Blocking and unblocking a thread

ified by the schedule may proceed in its execution. The remaining threads
are kept in a blocked state. Each location in the application where an action
should occur at some point in the schedule is instrumented with a call to the
replay engine. The engine checks with the schedule whether the next location
and the specified counter value has been reached. If this is the case, actions
following the event command are performed. In the case of a thread switch
the next thread according to the schedule is unblocked by the current thread
that thereafter blocks itself.

The routines block and unblock are shown in Fig. 5. A thread blocks by
waiting on an object lock, it is unblocked by a call to notifyAll on that
object by a different thread. If the thread switch is not caused by a call to
wait in the application, the lock used is an object privately allocated to that
particular thread by the replay engine. Therefore, only the desired thread will
wake up. A boolean flag blocked prevents that a thread actually performs the
wait in block only after another thread has already issued the corresponding
unblock.

When a thread calls wait on an application object, it releases all (poten-
tially recursive) locks on that object. A thread can wait on one object at a
time. To retain that semantics of a thread switch induced by a wait in the
application the wrapper for wait in the replay engine therefore temporarily
replaces the private lock object of a thread with the object the application
thread is waiting on; the original call to wait in the application is discarded
(but arguments are checked for exceptions), the actual call to wait is per-
formed by block as shown in Fig. 5. 4 Calls to notify and notifyAll in
the application are replaced with calls to wrappers in the replay engine that

4 An invocation of wait may throw an IllegalArgumentException, an
IllegalMonitorStateException, or an InterruptedException. We check for ex-
ceptions in that order, according to the behavior of Sun’s virtual machine (JDK 1.4.1 02)
for Linux.

83

Schuppan, Baur and Biere

check only for exceptions. The actual notification happens as part of a thread
switch in unblock only when a thread switches back to one of the threads
waiting on an object: unblock notifies the object a thread is waiting on. All
threads waiting on that object will receive a notification, but blocked will al-
low only the target of the thread switch to continue. A blocked thread starts
processing again when it is the target of a thread switch, i.e., time-outs that
can be specified in a call to wait are ignored.

Calls of the application to join and sleep are also substituted with invo-
cations of the replay engine. Exceptions are checked for and a thread switch
is performed if indicated by the schedule. Again, timing is not replayed.

The effect of a call to interrupt differs between a situation when the
interrupted thread is blocked due to a wait, sleep, or join or when it is
caught outside of these routines. Calls to interrupt, interrupted, and
isInterrupted are therefore replaced with calls to the replay engine. At the
level of the virtual machine neither notification nor joined state are the same
during replay as during the original execution. Instead, the state of a thread
is tracked in the replay engine, the substitutes to interrupt, interrupted,
and isInterrupted use that information to replay the original behavior. Not
emulated is behavior w.r.t. interruptible channels and Selectors [29].

A new thread is registered with the replay engine and assigned a numerical
id when an instance of Thread or a subclass is created. At the beginning of
a run method of a class that subclasses Thread or implements Runnable a
call to the replay engine is inserted that blocks the starting thread when it is
called by this thread for the first time.

When a terminate command is processed in the schedule all threads are
unblocked. Thus, threads that were blocked due to an invocation of wait or
join will continue with their execution even if they should remain blocked
according to the original trace. If the schedule ends without a terminate, the
replay engine remains active, as does the last thread that was switched to;
threads that were left blocked remain blocked.

Our implementation provides no special support for thread switches within
classes that are part of the Java API or used in its implementation (i.e.,
java.*, javax.*, sun.*). More specifically, the replay engine is not reentrant
and the instrumentation facility does not take special care of methods that
are substituted by the replay engine. In addition, the implementation of the
Java API differs between vendors. Ensuring portable replay would therefore
require a translation of the locations of thread switches when using different
implementations for schedule generation and replay. We do not regard this as
a severe restriction as many checking tools treat classes that are part of the
Java API as “safe” and do not perform thread switches within these classes,
the obvious exception being calls by the application to wait, sleep, join,
and yield that are handled separately by our implementation.

The Java memory model [20] allows an implementation not to resynchro-
nize data between the private memory of a thread and shared memory for

84

Schuppan, Baur and Biere

some operations. Only when locks are taken or released a read or write oper-
ation to shared memory is required. As the replay engine uses locks, it might
alter the behavior of the original application in these cases. Replay may also
not be precise due to different implementations between virtual machines or
different optimizations performed by a virtual machine on the original and
instrumented code 5 .

5 Experiments

In this section we briefly describe how to capture execution traces on the
fly. We then report on a series of experiments that indicate performance and
portability of our replay engine. Finally, we mention an extension of Java
PathFinder that generates schedules for replay.

5.1 Capturing Thread Schedules during Executions

A schedule can be generated easily on the fly during an execution of a Java
application if the virtual machine offers a means to invoke a user-defined
routine after each executed bytecode. The virtual machine needs to provide
information on the last and next threads and the last and next bytecodes
of the last thread as well as on the state of each thread. It then suffices to
count the number of times each bytecode is executed between two events and
to log corresponding events and actions. For proper replay thread switches,
calls to notify, time-outs, thread deaths and deadlocks must be included. A
corresponding procedure is given in Appendix C.

5.2 Capturing and Replaying Benchmarks

5.2.1 The JNuke Framework

The replay engine and instrumentation facility are part of the JNuke project
of the formal methods group at ETH. Goal of JNuke is to develop a framework
for dynamic and static analyses of Java bytecode. As first component a virtual
machine for Java was implemented [13] that allows rollback of execution steps
to explore different thread schedules as was done by Rivet [3]. On top of the
VM, the Eraser algorithm [27] is used to check for data races. An algorithm
to dectect high-level data races [1] has already been implemented. Work in
progress aims at performing rollback also for input/output events.

Capturing of thread schedules can be done simply by employing the feature
of this VM to implement a custom thread scheduler. We used a simple round
robin scheduler in JNuke that performs a thread switch after a fixed number
of instructions. This allows to select frequency and restrict locations of thread

5 Jikes RVM produced different results in the LUFact benchmark for original and instru-
mented versions. A similar effect could be achieved by inserting calls to methods (not
referring to application logic) in the original code.

85

Schuppan, Baur and Biere

switches. The former proved useful to generate thread switches at arbitrary
locations during testing of the replay engine. The latter is still used to prevent
thread switches in Java library classes.

Capturing with the custom VM still requires considerable overhead com-
pared to unconstrained execution on Sun’s JVM. This was the most limiting
factor to capture thread schedules of longer executions.

5.2.2 Results

The replay engine was tested with Jikes RVM v. 2.2.1, Kaffe Virtual Machine
v. 1.0.7, SableVM v. 1.0.8, Sun’s virtual machines shipped with Java 2 SE
v. 1.3.1-06, and with Java 2 SE v. 1.4.1-02. Platform was a PC with a single
Intel PIII-800 running Linux 2.4.19.

The benchmarks are taken from the multi-threaded part of the Java Grande
Forum Benchmark Suite [12]. Section 1 measures performance of low level
threading mechanisms, i.e., wait/notify, accessing synchronized objects
and methods, and thread creation, start, and destruction. Section 2 contains
compute-intensive programs with varying levels of synchronization: while LU-
Fact uses barriers frequently, Crypt needs no synchronization other than start
and termination of worker threads.

Tables 1 and 2 give the results, where n indicates the number of threads.
For each virtual machine, the run time of the uninstrumented program (in
seconds), the run time needed for replay of a given thread schedule on the
same VM, and the overhead for the replay are given. We do not have a
facility to capture a schedule on an arbitrary virtual machine. Therefore, the
schedule for replay has been generated with JNuke and is the same for all
virtual machines. However, the schedules that lead to the run time reported
for the uninstrumented application might not be the same as that replayed.
Run times are averaged over three runs. Note, that the runtime for some
of the applications with smaller execution time may vary up to a factor of 2
between two executions.

Except for Sun’s 1.4 JVM the virtual machines produced errors or timed
out with Fork/Join from section 1. We therefore do not report results here.
Due to limitations of our virtual machine at the time of writing we could not
generate a trace for the Series benchmark in section 2.

The overhead for replay of a specific schedule depends on the frequency of
calls to the replay engine and on the number of thread switches performed.
Note, that the number of thread switches might differ between original and
replayed executions. The SOR benchmark uses a barrier with busy waiting
for synchronization. The replayed execution probably spends less time there.
In most cases the slowdown of the replayed execution is less than a factor of
10. This seems acceptable for interactive debugging and is in the same range
as the figures reported by [15].

The simple scheduler we used may insert thread switches at arbitrary lo-
cations in the application. Thus, for some of the examples a call to the replay

86

Schuppan, Baur and Biere

Benchmark n Sun JVM 1.4 Sun JVM 1.3 Jikes RVM Kaffe SableVM

orig. replay ovrh. orig. replay ovrh. orig. replay ovrh. orig. replay ovrh. orig. replay ovrh.

Barrier 2 6.1 124.3 20.5 err 136.2 err 9.5 99.4 10.4 2.2 410.5 179.4 21.4 787.7 36.6

4 22.9 157.2 6.8 err 172.7 err 9.4 121.5 12.7 2.7 482.7 174.1 69.2 942.7 13.6

8 34.5 191.0 5.4 err 203.0 err 9.1 143.8 15.7 2.8 501.0 174.3 90.9 1000.9 10.9

Sync 2 15.1 13.1 .8 17.0 20.7 1.4 8.9 30.4 3.3 1.7 19.3 10.8 5.6 144.6 25.3

4 14.8 10.9 .7 19.8 17.4 .8 8.7 28.7 3.2 1.5 17.2 11.3 err 123.8 err

8 18.8 9.9 .5 15.9 15.9 1.1 8.6 27.2 3.1 1.3 14.5 10.3 4.4 107.4 24.2

Table 1
Results for section 1 of Java Grande Forum Multi-Threaded Benchmarks

Benchmark n Sun JVM 1.4 Sun JVM 1.3 Jikes RVM Kaffe SableVM

orig. replay ovrh. orig. replay ovrh. orig. replay ovrh. orig. replay ovrh. orig. replay ovrh.

LUFact 2 3.1 34.8 11.0 63.2 57.2 .9 11.3 67.0 5.8 5.1 73.8 14.3 15.8 562.1 35.3

4 7.3 33.6 4.4 126.0 56.1 .4 11.4 64.8 5.6 4.8 74.9 15.3 24.6 529.5 21.4

8 15.7 33.5 2.0 503.7 55.1 .1 11.4 61.7 5.3 4.9 67.9 13.6 46.6 495.2 10.5

Crypt 2 5.6 20.2 3.5 5.8 25.7 4.4 13.7 40.0 2.9 5.6 23.9 4.2 18.4 135.2 7.2

4 5.6 19.9 3.5 5.8 25.5 4.3 13.7 39.9 2.8 5.6 23.6 4.2 18.4 135.1 7.2

8 5.6 19.8 3.5 5.8 26.5 4.5 13.7 40.2 2.9 5.6 24.3 4.3 18.5 136.0 7.2

SOR 2 4.3 3.5 .7 2.5 4.4 1.7 10.2 23.3 2.2 2.3 4.7 2.0 err err err

4 8.8 3.8 .4 4.6 4.4 .9 12.3 22.5 1.8 4.3 4.4 1.0 err err err

8 18.7 6.9 .3 9.3 10.4 1.1 17.0 26.4 1.5 8.6 11.3 1.3 err err err

SparseMatmult 2 4.0 24.9 6.0 4.0 37.5 9.0 12.9 53.9 4.1 5.2 43.4 8.2 16.3 339.8 20.7

4 3.5 24.3 6.8 3.4 36.9 10.4 12.3 51.7 4.1 4.8 44.1 9.0 15.7 338.4 21.3

8 3.1 23.8 7.4 3.0 35.9 11.5 12.0 54.6 4.5 4.5 42.0 9.1 15.6 341.0 21.7

Table 2
Results for section 2 of Java Grande Forum Multi-Threaded Benchmarks

engine is performed before every bytecode of the original instructions in core
routines. The sizes of the class files containing these core routines grow corre-
spondingly – 7 bytecode instructions are inserted per call to the replay engine.
However, most class files are not affected by replay and, thus, do not change.

The instrumentation of an application preserves the line number table
attributes of the original version. This enables transparent source level de-
bugging. A given thread schedule can be replayed using, for example, stepwise
execution. Apart from setting breakpoints no special interaction is required.
The debugger automatically selects the only thread ready to run for execution.
Tests have been successful using Sun’s jdb, Eclipse [9], JDebugTool [8], and
JSwat [14].

5.3 A Listener for Java PathFinder

Java PathFinder [32] is an explicit-state model checker for Java developed at
NASA Ames. Since release 3, Java PathFinder provides listener interfaces
that enable external tools to track and control the execution of an application
and the search for a counterexample.

In a further experiment, we implemented a listener for Java PathFinder
v. 3.1.1 to generate schedules during an execution. The implementation follows
the algorithm in Fig. C.1. The listener handles wait, notify, and notifyAll.
Time-out and sleep are not explicitly modeled by PathFinder, their imple-
mentation of join is based on wait. Among others we used a modified Fund-
Manager example from the PathFinder web page [2].

87

Schuppan, Baur and Biere

schedulebegin 0 # main
before Prodcons 1 36 1
send 1 0
receive 0 -1
scheduleend

schedulebegin 1 # p
receive 0 0
before Producer 1 13 1
send 2 0
receive 1 -1
scheduleend

schedulebegin 2 # c1
receive 1 0
before Consumer 1 9 1
send 3 0
receive 3 0
before Consumer 1 13 1
send 2 0
receive 2 0
scheduleend

schedulebegin 3 # c2
receive 2 0
before Consumer 1 13 1
send 2 0
receive 3 -1
scheduleend

Fig. 6. Schedule leading to failure in message-based format

6 A More Flexible Solution

The switch-based format presented in Sect. 3 is limited to a sequence of thread
switches as performed on a uniprocessor. Most of the mechanisms described
in Sect. 4 can be reused to implement a more flexible solution that retains
parallelism if possible. That format still does not reflect directly the data
dependencies of an execution. However, it seems flexible enough to handle the
thread dependencies generated by many capturing algorithms.

A given “happens-before” relation [18] can be enforced by (non-blocking)
sending and (blocking) receiving of messages between threads. Each thread
has its own sequence of commands. The switch command is replaced with
send and receive primitives. send sends to a thread with the given id a
long value as message. receive waits for a message from a specific thread
with a specific content. Messages are buffered at the receiver. Figure 6 shows
the schedule leading to a failure from Fig. 1a) in the message-based format.
A replay engine for the message-based format has been implemented as a
prototype.

The format described in Sect. 3 can be converted to the message-based
format by splitting a single schedule into a sequence of commands for each
thread and replacing each switch command with a pair of send and receive

operations. A conversion from the message-based format to a more specific
instance in the switch-based format can be performed by a topological sort
of the dependency graph given by the happens-before relation. Edwards [11]
proved that minimizing the number of thread switches during the transforma-
tion of a concurrent control flow graph of an Esterel program is NP-complete.
The same construction can be applied to a message-based thread schedule, for
a proof see the full version of this paper available from the authors.

7 Discussion

In principle it would have been possible to use an after instead of a before

primitive. Instrumentation is more difficult in that case: a call to the replay
engine needs to be inserted before every potential successor of a bytecode after
which a thread change occurred. On the other hand, it should not make much
difference for a trace generating tool to produce the required information: if a
bytecode has been executed its successor will be known. However, if a schedule
is extracted from a (partial) bytecode trace additional hints might be needed

88

Schuppan, Baur and Biere

to find the proper successor for the last bytecode stated for a given thread.

In our schedule format the exact point of an event is uniquely determined
by the location of a bytecode and the number of its (attempted) executions. If
a schedule is generated during execution of the program this typically requires
counting the number of executions of each bytecode since the last event. Al-
ternatively, a software instruction counter [22] could have been used. During
capture this would require only a single counter that counts the number of
backward branches in application code. In our format, each instruction needs
to be counted. On the other hand, during replay a software instruction counter
requires to instrument each backward branch, while our format needs instru-
mentation only at points where an actual call to the replay engine should
occur. Given the exponential complexity of some verification algorithms, a
software instruction counter might we worth exploring.

The format of a schedule is somewhat verbose. While easily readable, a
more compact representation might be necessary to represent long traces.

Source code debugging is preferable in most cases. Transparency can be
achieved in this case (see Sect. 5.2.2). However, some concurrency errors will
only be understandable at bytecode level. Thus, transparent stepping through
bytecode would be desirable as well. This could be implemented by providing
an additional attribute in class files that tells a debugger which bytecodes
belong to the original application and which have been added or removed for
replay.

8 Conclusion

We present mechanisms that allow deterministic execution of a thread sched-
ule on an arbitrary JVM by instrumenting class files of an application and
linking with a replay engine. A language to describe thread schedules is pro-
posed. An execution on a uniprocessor is described as a sequence of thread
switches. We show how to generate thread schedules during an execution of
a Java program with the JNuke and Java PathFinder VMs. The overhead for
replay execution is less than 10 times in most cases, which is good enough
for interactive debugging. Several off-the-shelf debuggers are used for replay.
Future work includes extending the format and replay engine to further events
such as random numbers or input/output. We plan to make the replay engine
available at http://www.inf.ethz.ch/personal/schuppan/jreplay.

Acknowledgements

We thank Cyrille Artho for helpful discussions, in particular, reminding us of
recursive locks. Thanks also go to Pascal Eugster as the author of the virtual
machine at the core of JNuke and for providing hooks to capture schedules.

89

http://www.inf.ethz.ch/personal/schuppan/jreplay

Schuppan, Baur and Biere

References

[1] Artho, C., K. Havelund and A. Biere, High-level data races, Journal on Software
Testing, Verification & Reliability (STVR) 13 (2003).

[2] Automated Software Engineering Group at NASA Ames Research Center, Fund
managers example, http://ase.arc.nasa.gov/visser/jpf/jdc.html.

[3] Bruening, D., “Systematic Testing of Multithreaded Java Programs,” Master’s
thesis, MIT (1999).

[4] Choi, J.-D., B. Alpern, T. Ngo, M. Sridharan and J. Vlissides, A perturbation-
free replay platform for cross-optimized multithreaded applications, in: IPDPS,
2001.

[5] Choi, J.-D. and H. Srinivasan, Deterministic replay of Java multithreaded
applications, in: SPDT, 1998.

[6] Choi, J.-D. and A. Zeller, Isolating failure-inducing thread schedules, in: ISSTA,
2002.

[7] Corbett, J., M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby and
H. Zheng, Bandera: Extracting finite-state models from Java source code, in:
ICSE, 2000.

[8] debugtools.com, debugtools.com – JDebugTool graphical Java debugger,
http://www.debugtools.com/.

[9] eclipse.org, Eclipse, http://www.eclipse.org/.

[10] Edelstein, O., E. Farchi, E. Goldin, Y. Nir, G. Ratsaby and S. Ur, Framework for
testing multi-threaded Java programs, Concurrency and Computation: Practice
and Experience 15 (2003).

[11] Edwards, S., An Esterel compiler for large control-dominated systems, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
21 (2002).

[12] EPCC, The Java Grande Forum benchmark suite,
http://www.epcc.ed.ac.uk/javagrande/index\protect\unhbox\voidb@x\
kern.06em\vbox{\hrulewidth.3em}1.html.

[13] Eugster, P., “Java Virtual Machine with Rollback Procedure allowing
Systematic and Exhaustive Testing of Multi-threaded Java Programs,” Master’s
thesis, ETH Zrich (2003).

[14] Fiedler, N., JSwat graphical Java debugger,
http://www.bluemarsh.com/java/jswat/index.html.

[15] Georges, A., M. Christiaens, M. Ronsse and K. D. Bosschere, JaReC:
a record/replay system for multi-threaded Java applications, in: Parallel
Computing: Grids and Applications, 2002.

90

http://ase.arc.nasa.gov/visser/jpf/jdc.html
http://www.debugtools.com/
http://www.eclipse.org/
http://www.epcc.ed.ac.uk/javagrande/indexprotect unhbox voidb@x kern .06emvbox {hrule width.3em}1.html
http://www.epcc.ed.ac.uk/javagrande/indexprotect unhbox voidb@x kern .06emvbox {hrule width.3em}1.html
http://www.bluemarsh.com/java/jswat/index.html

Schuppan, Baur and Biere

[16] Gosling, J., B. Joy, G. Steele and G. Bracha, “The Java Language Specification,”
Addison-Wesley, 2000, second edition.

[17] Konuru, R., H. Srinivasan and J.-D. Choi, Deterministic replay of distributed
Java applications, in: IPDPS, 2000.

[18] Lamport, L., Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM 21 (1978).

[19] LeBlanc, T. J. and J. M. Mellor-Crummey, Debugging parallel programs with
Instant Replay, IEEE Transactions on Computers C-36 (1987).

[20] Londholm, T. and F. Jellin, “The Java Virtual Machine Specification,” Addison-
Wesley, 1999, second edition.

[21] McDowell, C. and D. Helmbold, Debugging concurrent programs, ACM
Computing Surveys 21 (1989).

[22] Mellor-Crummey, J. M. and T. J. LeBlanc, A software instruction counter, in:
ASPLOS, 1989.

[23] Netzer, R. H. B., Optimal tracing and replay for debugging shared-memory
parallel programs, in: Workshop on Parallel and Distributed Debugging, 1993.

[24] Pan, D. and M. Linton, Supporting reverse execution of parallel programs, in:
Workshop on Parallel and Distributed Debugging, 1988.

[25] Ronsse, M. and K. D. Bosschere, RecPlay: A fully integrated practical
record/replay system, ACM TCS 17 (1999).

[26] Russinovich, M. and B. Cogswell, Replay for concurrent non-deterministic
shared-memory applications, in: PLDI, 1996.

[27] Savage, S., M. Burrows, G. Nelson, P. Sobalvarro and T. Anderson, Eraser: A
dynamic data race detector for multithreaded programs, ACM TCS 15 (1997).

[28] Steven, J., P. Chandra, B. Fleck and A. Podgurski, jRapture: A capture/replay
tool for observation-based testing, in: ISSTA, 2000.

[29] Sun, Java 2 Platform, Standard Edition, v 1.4.1 API Specification,
http://java.sun.com/j2se/1.4.1/docs/api/index.html.

[30] Sun, Java Virtual Machine Profiler Interface (JVMPI),
http://java.sun.com/j2se/1.4.1/docs/guide/jvmpi/jvmpi.html.

[31] Tai, K.-C., R. H. Carver and E. E. Obaid, Debugging concurrent Ada programs
by deterministic execution, IEEE TSE 17 (1991).

[32] Visser, W., K. Havelund, G. Brat and S. Park, Model checking programs, in:
ASE, 2000.

[33] Zeller, A. and R. Hildebrandt, Simplifying and isolating failure-inducing input,
IEEE TSE 28 (2002).

91

http://java.sun.com/j2se/1.4.1/docs/api/index.html
http://java.sun.com/j2se/1.4.1/docs/guide/jvmpi/jvmpi.html

Schuppan, Baur and Biere

A Thread States

Figure A.1 shows the thread model of the replay engine. The model is based
on Sun’s Java documentation [16,20,29]. Ambiguities for the wait-related
transitions were removed based on results of a number of experiments with
Sun’s virtual machine, version 1.4.1 02 for Linux. For some join- and sleep-
related transitions we could neither validate nor invalidate our assumptions
by using only test cases.

j. joined

waiting

w. timed−out

j. timed−out

joining interrupt

time−out

join

interrupt

time−out

notify

wait

interrupt

time−out

sleeping

sleep

r. interrupted

w
a
i
t
,
j
o
i
n
,
s
l
e
e
p
/

died

t
h
r
o
w

I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

startexisting

new Thread()

dead

i
n
t
e
r
r
u
p
t

i
n
t
e
r
r
u
p
t
e
d

r
u
n
.
r
e
t
u
r
n

r
u
n
.
r
e
t
u
r
n

s. timed−out

interrupt

interrupt

died

interrupt

interrupt
notify

interrupt notify

w. int. flag

w.notified

w. int. throw

j. int. throw

j. int. flag

s. int. throw

s. int. flag

(reacquire lock), reschedule

(reacquire lock), reschedule/set interrupted flag

(reacquire lock), reschedule/throw InterruptedException

running

Fig. A.1. Model of thread states in Java used by the replay engine

B Schedule Syntax

before <class name> <method index> <bytecode offset> <execution count>

Prevents advancing to the next command in the thread schedule until the
specified bytecode was about to be executed for execution count times since
the last before or in command. Unsuccessful attempts to execute a bytecode
count as one execution. As a consequence, a thread switch from a thread, that
was about to execute a monitorenter instruction, but does not succeed, and
immediately (without executing an instruction) switches to a different thread,
is specified with an execution count of 1. On the other hand, if a thread switch
from a thread occurs at the same location as the previous thread switch from
that thread, performing a single execution of the specified bytecode between,
an execution count of 2 is needed.

in <class name> <method index> <bytecode offset> <execution count>

Prevents advancing to next command in the thread schedule until the spec-
ified bytecode is blocked in the execution count-th execution since the last
before or in command. Otherwise same semantics as for before.

92

Schuppan, Baur and Biere

switch <thread id>

Blocks current thread and, if thread id is not none, unblocks thread thread id.

notify <thread id>

Processes a notification event in the state model of the replay engine. Does
not directly affect state of the original application.

timeout <thread id>

Processes a time-out event in the state model of the replay engine. Does not
directly affect state of the original application.

die <thread id>

Lets the current thread terminate and, if thread id is not none, unblocks
thread thread id after that.

terminate

Unblocks all threads and disables replay engine.

log <log level> <message>

Prints message if log level is less than or equal to the value of the Java
system property jreplay.verbosity. Legal values for log level are 1 – 4,
message extends up to the end of the line or a # sign. Sequences of white
space are represented as a single blank.

loopbegin

Marks the beginning of a loop. Encompasses all commands up to the next
loopend of the same nesting depth.

loopend [<i>|inf]

Marks the end of a loop. The loop is executed i times if
0 < i ≤ Long .MAX VALUE , an infinite number of times if i = inf .

C Generating Schedules

Figure C.1 shows a procedure in a Java-like syntax to generate a schedule on
the fly from an execution of a Java application. We use a similar algorithm
in our experiments with Java PathFinder. If the algorithm is to be applied
to bytecode traces, one will typically have to infer the bytecode that would
have been executed after the last bytecode given for a thread, the state of that
thread after the execution of that last bytecode, targets of calls to notify and
time-outs.

93

Schuppan, Baur and Biere

HashMap count; /* assume that count returns 0 if a key is not yet
 stored; use array semantics below */
boolean flag; /* only print before command once */

printlnBefore(Instruction insn, int count) {
 if (!flag) {
 println(‘‘before ‘‘ +
 insn.getFQClassName() + ‘‘ ‘‘ +
 insn.getMethodIndex() + ‘‘ ‘‘ +
 insn.getOffset() + ‘‘ ‘‘ +
 count);
 flag = true;
 }
}

printlnIn(Instruction insn, int count) {
 /* as ‘‘before’’, but ‘‘in’’ and no flag */
}

/* called after each execution of a bytecode. */
instructionExecuted(JVM jvm) {
 Thread t = jvm.getLastThread();
 Thread nextt;
 Instruction insn = t.getLastInstruction();
 Instruction nexti;

 flag = false;
 count[insn]++;
 if (insn instanceof NotifyInstruction) {
 printlnBefore(insn, count[insn]);
 println(‘‘notify ‘‘ + ((NotifyInstruction) insn).getTarget());
 }
 if (jvm.hasNewTimedoutThread()) {
 printlnBefore(insn, count[insn]);
 foreach newly timedout thread tt do
 println(‘‘timeout ‘‘ + tt.getId());
 }
 if (jvm.hasNextThread()) {
 nextt = jvm.getNextThread();
 if (t != nextt) {
 if (t.isAlive()) {
 if (!t.isWaiting() && !t.isJoining() && !t.isSleeping())
 printlnBefore(next, count[next] + 1);
 else
 printlnIn(insn, count[insn]);
 println(‘‘switch ‘‘ + nextt.getId());
 } else {
 printlnBefore(insn, count[insn]);
 println(‘‘die ‘‘ + nextt.getId());
 }
 count.clear();
 }
 } else if (jvm.isDeadlocked()) {
 if (t.isAlive()) {
 if (!t.isWaiting() && !t.isJoining() && !t.isSleeping())
 printlnBefore(insn, count[insn]);
 else
 printlnIn(insn, count[insn]);
 println(‘‘switch none‘‘);
 } else {
 printlnBefore(insn, count[insn]);
 println(‘‘die none‘‘);
 }
 } else {
 printlnBefore(insn, count[insn]);
 println(‘‘terminate’’);
 }
}

Fig. C.1. Procedure to generate a schedule from an execution

94

	Introduction
	Related Work
	Representing Information for Replay
	What Information is Needed for Replay?
	Example
	A Language for Schedules

	Mechanisms
	Experiments
	Capturing Thread Schedules during Executions
	Capturing and Replaying Benchmarks
	A Listener for Java PathFinder

	A More Flexible Solution
	Discussion
	Conclusion
	References
	Thread States
	Schedule Syntax
	Generating Schedules

